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The formulation and the exact solution of self-similar motions associated 
with strong point-explosions in a gas, the initial density of which is 
constant or varies as pi = Ar- a. was given in Sedov’ s papers [ 1,2,3 1. 
Here we will examine the general case of variable initial density. If we 
introduce dimensionless variables 

A=+, f(h) = $9 s(h)=+ h(h)+ 

(where v represents the speed, p the density. p the pressure, rI( t) the 
radius of the blastwave, u2 = u(r3, t), p2 = p(rz, t), p2 = p(rZ, t) ), 

then the solution oi the problem reduces to the integration of the system 
of equations: 

Here y, the ratio of specific heats, exceeds unity and the Index v 
takes on values 1, 2, or 3 corresponding to plane, cylindrical, or 
spherical symmetry respectively. 

The boundary conditions of the problem state: 

j(i) = g (1) = A (1) = i, j (0) = 0 (2) 

Equations (11 have two first integrals (see [3 I), the integral of 
energy and the Integral of adlabaticity, which can be represented respect- 

539 



540 

ively as 

V.P. Korobeinikov and E.V. Riazanov 

g 
(3) 

(4) 

when conditions (2) are allowed for. The system of equations (1) can be 

integrated and its solution, satisfying boundary conditions (2). repre- 

sented in the form 

h (F) = F-8 [-$ (F - y+)]-“’ x 

2 (vy - v + 2) 
x 3v-2---‘i(v-2)-(y + l)W [ 

‘y$-lv+2--0 

( 2 yv-v+2 
-_F -” 

>I 

g(F) = Fo6 [ys (F _ y+j]a”oa’ cy+ [q - FJ]=’ X 

x 
2 (vu - v + 2) % =.-tea, 

3v--2--y(v--2)-(y+ I)0 2 yv-v+2 -F 
il 

(5 

h (F) = F” [y+ r$ - F) jsa’ >: 

[ 
2 (VY - v + 2) v+lv+z--w 4+(o-a) a, 

x 3v - 2 - y (v - 2) - (*: -i_ 1) w t 2 yv-vf2 -41 

where 
2 

8= VfZ--w’ 

Y+l 
a1 = -8-a2, 

1-Y 
yv-v + 2 a2=2(y-l)+v-~y 

v--w 
a, = 

(v--)(v+2-OJW) 
3[3- 2(y-l)+v-~Oy 

w(y+ I)-& 
2v - VY - 0 al, a5 = 2v - vy - w 

In Sedov’s solutions [ 3 I , the related parameter V rather than F was 

used: 

When the solution may be extended to the center of symmetry [3 1, then 

the parametric variable F is constrained according to 

Hereafter we shall examine only this case. The solutions (5) possess 

singularities with respect to the parameter y when either the coefficients 

on the right side of (5) or the quantities 1o .( i = 1, 2, . . . 5). defined 

by CT), approach infinity. These cases we shill call y-singular. In all 

these cases one cannot use the solutions in the form (5) - (7) for com- 

putations of functions f(X), g(X). and h(X). Therefore it is necessary 

to seek new representations of the solutions for these singular cases. 
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The case of the infinite coefficients in (5), corresponding to 
value of 0 

the 

ol_ 3v++~(2--v) 
Y-i-1 

has been solved earlier [ 3 I and is given by 

f-A, g = h”-r, h = A’ (6) 

Hereafter the form of the solution is found in two other cases, namely 

when 

2.(y - 1) + v 
O-+02= 

Y 
(al, a2. a3, a4-+ w) 

and when 
WA 03=v(2-Y) (a4, a6 -+ = 1 

The form of the solution may be obtained either by performing the 
limiting process w + oj( j = 2, 3) in equations (5) - (9), or directly 
from the differential equations (l), with o replaced by 6~~. The second 
approach is simpler. 

With the aid of the energy integral (3) the equations (1) can be trans- 
formed as follows: 

df f --_- 
dh- A 

x y ;- LO 
2 

- (y + I) r + y+l 
h 2 1 -l 

dg -&z-g ~+(v-l,~_y+ 
C I(. ‘f--A y+l -1 

2 > 

Substituting f= AF (6) and o- y in equation (9) and integrating, 
with due regard for boundary conditions (21, we obtain 

l-F 
erp -(y+1)82F-(y+1)j2.; 1 
1 

(11) 
& z yv-v++ 

Further, by means of the integrals (3) and (4) we find 

g !F) L F X 

(12) 

(13) 
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Formulas (61, (111, (12). and (13) furnish the solution in the second 
singular case o= fi+, 

Let us now examine the third singular case o = ti7 = ~(2 - y). Then it 
is easy to establish the form of the function g(F) from equations (10). 
(61, and (9). Further, utilizing (3) and (4). one determines A(F) and 
h(F). The solutions have the form 

As a consequence of self similarity [2,3 1 the position of the blast 
wave and its speed depend on time as follows: 

E, ‘I28 
r2 (t) = z4 i ) t8, c(t)= Fjry (15) 

Here E0 represents the energy of the explosion and a is a function of 

y. v, and o determined by the conservation of energy 

In terms of the dimensionless variables, (16) is written: 

a (Y, v, w) = (?,2 _ 1) s (h + gf2) kyel di, 
0 

0; = 22-c (v -- 1) + (v - 2) (v - 3) 

!17} 

It is clear that for the first singular case with solution (8) the 
function a(y, v. wf simplifies to 

20 
Q (v, v, W) -;-” ‘G (,&II> I2 

The magnitudes of the parameters at the blast wave are found from the 

expressions for strong shock waves: 
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The expressions (111, (12). (13), (61, (14), (151, (17). and (16) give 

the full solution for the singular cases o = o2 and o = ok,. 

As previously mentioned, each singular solution can be obtained by an 

appropriate limiting process. For the sake of simplicity we shall show 

how this is done in the third singular case with oJ = 0. Consequently 

y + 2 for all three values of the index v. Consider the limit of the 

function 

g(F) = 

7 [ 
2(vy--vTz) c-i + 1) (v 7 2) 

3v - :! - -;’ (v - 2) \\ 2 (VY - v i 2) - P‘13”‘+az 

obtained from equation (5). For y -+ 2, we have: 

After a simplification of the second bracket in this expression we 

arrive at 

2v (Yfl) 1-F 
-v+z----r u+1 --F 

2 x 

Y-+2 

X lim 
‘ 2(vy-vv2) 

\[ 

=a+=& 

y-+2 
3v - 2 - y (v --- 2) i 

(Y + 1) (v + 2) _ F 

2 (vy - v + 2) 11 >I 

where the notation is used 

z = (v + 2) (2 - -!)-I \.q - Fj [v (y + 1) (1 - F)]-1 

Going to the limit we find: 

One can also determine h(F) and X(F) by the limiting process, the 

latter determination being altogether trivial. However, this is un- 

necessary because with the aid of the integrals (3) and (4) and the pre- 
ceding expression for g(F) one can obtain the full solution, which be- 
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comes equivalent to (14) for y = 2. The limiting process in the case of 

arbitrary non-zero values of o+((r, v) goes through analogously. Similarly 

one can establish the solutions for o+ o 
2’ 

The present investigation shows that the solution of the problem of 

strong explosions are continuous in y, as one would expect from the form 

of the basic differential equations (1). In particular, the investigation 

removes all doubts concerning the solutions for y + 2. 

In this connection, we note that for this problem reference [4 1 (pp. 

556-557) contains errors in the description of the pressure variation 

near the center of symmetry (h = 0, F = (y + 1)/2y) when o = 0 and y + 2. 

In this case we find the value of h at the center from equation (14): 
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